Glycosylation of α2δ1 subunit: a sweet talk with Cav1.2 channels.

نویسندگان

  • Joanna Lazniewska
  • Norbert Weiss
چکیده

Bosentan, an endothelin-1 (ET) receptor antagonist is an important drug for the effective management of patients with pulmonary arterial hypertension. Bosentan has a rather complicated pharmacokinetics in humans involving multiple physiological components that have a profound influence on its drug disposition. Bosentan is mainly metabolized by cytochrome P450 (CYP) 3A4 and 2C9 enzymes with the involvement of multiple transporters that control its hepatic uptake and biliary excretion. The involvement of phase 2 metabolism of bosentan is a key to have an enhanced biliary excretion of the drug-related products. While bosentan exhibits high protein binding restricting the drug from extensive distribution and significant urinary excretion, bosentan induces its own metabolism by an increased expression of CYP3A4 on repeated dosing. Due to the above properties, bosentan has the potential to display drug-drug interaction with the co-administered drugs, either being a perpetrator or a victim. The intent of this review is manifold: a) to summarize the physiological role of CYP enzymes and hepatic-biliary transporters; b) to discuss the mechanism(s) involved in the purported liver injury caused by bosentan; c) to tabulate the numerous clinical drug-drug interaction studies involving the physiological interplay with CYP and/or transporters; d) to provide some perspectives on dosing strategy of bosentan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A naturally occurring truncated Cav1.2 α1-subunit inhibits Ca2+ current in A7r5 cells.

Alternative splicing of the voltage-gated Ca(2+) (CaV) α1-subunit adds to the functional diversity of Ca(2+) channels. A variant with a 73-nt deletion in exon 15 of the Cav1.2 α1-subunit (Cav1.2Δ73) produced by alternative splicing that predicts a truncated protein has been described, but its function, if any, is unknown. We sought to determine if, by analogy to other truncated CaV α1-subunits,...

متن کامل

Lower Affinity of Isradipine for L-Type Ca2+ Channels during Substantia Nigra Dopamine Neuron-Like Activity: Implications for Neuroprotection in Parkinson's Disease.

Ca2+-influx through L-type Ca2+-channels (LTCCs) is associated with activity-related stressful oscillations of Ca2+ levels within dopaminergic (DA) neurons in the substantia nigra (SN), which may contribute to their selective degeneration in Parkinson's disease (PD). LTCC blockers were neuroprotective in mouse neurotoxin models of PD, and isradipine is currently undergoing testing in a phase II...

متن کامل

Calcium channel α2δ1 subunit as a novel biomarker for diagnosis of hepatocellular carcinoma

Objective Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide. The identification of new simple, inexpensive and highly accurate markers for HCC diagnosis and screening is needed. This case-control study evaluates the role of annexin A2 and voltage-gated calcium channels α2δ1 subunit as serum biomarkers for HCC diagnosis. Methods The study comprised three groups: grou...

متن کامل

On the Role of Ca- and Voltage-Dependent Inactivation in Cav1.2 Sensitivity for the Phenylalkylamine (-)Gallopamil

L-type calcium channels (Cav1.m) inactivate in response to elevation of intracellular Ca 21 (Ca-dependent inactivation) and additionally by conformational changes induced by membrane depolarization (fast and slow voltage-dependent inactivation). Molecular determinants of inactivation play an essential role in channel inhibition by phenylalkylamines (PAAs). The relative impacts, however, of Ca-d...

متن کامل

Cardiac L-type calcium channel (Cav1.2) associates with subunits

The cardiac voltage-gated Ca channel, Cav1.2, mediates excitation-contraction coupling in the heart. The molecular composition of the channel includes the pore-forming 1 subunit and auxiliary 2/ -1 and subunits. Ca channel subunits, of which there are 8 isoforms, consist of 4 transmembrane domains with intracellular Nand C-terminal ends. The 1 subunit was initially detected in the skeletal musc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • General physiology and biophysics

دوره 35 3  شماره 

صفحات  -

تاریخ انتشار 2016